Nuestro sitio web utiliza cookies para mejorar y personalizar su experiencia y para mostrar anuncios (si los hay). Nuestro sitio web también puede incluir cookies de terceros como Google Adsense, Google Analytics, Youtube. Al usar el sitio web, usted consiente el uso de cookies. Hemos actualizado nuestra Política de Privacidad. Por favor, haga clic en el botón para consultar nuestra Política de Privacidad.

Todo sobre el descubrimiento de Hans Christian Ørsted

https://s1.elespanol.com/2020/10/20/el-cultural/el_cultural_529710099_218693821_1706x1280.jpg

Hans Christian Ørsted es recordado como una de las figuras fundamentales en la historia de la ciencia, especialmente por su contribución al descubrimiento de la relación entre la electricidad y el magnetismo. Este físico y químico danés, nacido en 1777, realizó un experimento crucial en 1820 que sentaría las bases del electromagnetismo, rama clave para el desarrollo tecnológico de los siglos XIX y XX.

El panorama científico previo a Ørsted

En la Europa a inicios del siglo XIX, los estudiosos mostraban gran interés por la electricidad y sus usos, aunque la relación entre los fenómenos eléctricos y magnéticos aún no se entendía completamente. Las contribuciones de Alessandro Volta, Benjamin Franklin y otros habían aportado instrumentos y primeras teorías, pero el magnetismo y la electricidad continuaban siendo vistos como fenómenos independientes.

Ørsted, influenciado por las ideas del Naturphilosophie y por el ambiente intelectual de Copenhague, se preguntaba si había una relación oculta entre estos dos ámbitos aparentemente independientes. La posibilidad de una conexión era un tema recurrente en los debates académicos, pero aún no existía evidencia experimental.

El experimento crucial de 1820

El hallazgo de Ørsted tuvo lugar durante una lección universitaria frente a sus alumnos en la Universidad de Copenhague. Utilizando una pila voltaica, cableado y una aguja magnética (brújula), Ørsted observó que, al cerrar el circuito de la pila, la aguja de la brújula se desviaba. El paso de la corriente eléctrica generaba un campo magnético que actuaba sobre el imán de la brújula. Cuando interrumpía la corriente, la aguja regresaba a su posición inicial, señalando una relación inmediata y directa entre ambos fenómenos.

El fenómeno que descubrió Ørsted puede resumirse de la siguiente manera: una corriente eléctrica produce un campo magnético a su alrededor. Este resultado parecía sencillo, pero revolucionó completamente la comprensión de la física de la época.

Consecuencias científicas y tecnológicas

El hallazgo de Ørsted impactó de manera inmediata en el ámbito científico. André-Marie Ampère, motivado por los hallazgos de Ørsted, creó la teoría matemática del electromagnetismo, estableciendo las leyes que rigen la relación entre corriente y magnetismo. Más tarde, Michael Faraday utilizaría este principio fundamental para desvelar la inducción electromagnética, lo que permitió avanzar en el desarrollo de los generadores eléctricos.

Entre los aparatos que aparecieron de forma directa o indirecta debido a este descubrimiento se incluyen:

El electroimán: creado pocos años después, el electroimán es el fundamento de tecnologías presentes en grúas industriales, timbres, relevadores y trenes de alta velocidad.

El telégrafo eléctrico: uno de los sistemas iniciales de comunicación remota se fundamentó en el uso de campos electromagnéticos.

El motor eléctrico: la comprensión de la relación entre electricidad y magnetismo permitió la invención de motores capaces de transformar energía eléctrica en movimiento, pieza clave en la industrialización.

Consolidación del electromagnetismo como ciencia

La observación efectuada por Ørsted permitió el avance hacia teorías más extensas. James Clerk Maxwell, varios años después, consiguió integrar las leyes del electromagnetismo en un sistema de ecuaciones, sentando las bases de una de las teorías físicas más destacadas de la era moderna. Áreas como la electrodinámica, las telecomunicaciones, la producción de energía eléctrica y la moderna electrónica derivan del principio descubierto por Ørsted.

Casos prácticos y ejemplos de aplicación

El impacto de la obra de Ørsted se manifiesta en la vida cotidiana y en sectores industriales. Las tarjetas de crédito usan bandas magnéticas, las puertas automáticas y sistemas de seguridad emplean sensores electromagnéticos, las líneas de energía dependen de generadores que funcionan con el principio de inducción electromagnética, derivado directamente del descubrimiento de Ørsted. Incluso la tecnología celular y la resonancia magnética nuclear tienen bases en el electromagnetismo.

Del mismo modo, la enseñanza científica ha adoptado el experimento de Ørsted como un ejemplo crucial para mostrar a los alumnos la importancia de la experimentación y cómo los fenómenos naturales que antes se consideraban separados están interconectados.

Herencia y impacto en la cultura

Hans Christian Ørsted no solo es una figura venerada en la ciencia danesa; su nombre quedó asociado a la unidad de medida del campo magnético en el sistema CGS, el «oersted». Instituciones de investigación, premios científicos y monumentos rinden homenaje a su legado. Más allá de su descubrimiento, Ørsted fue un pensador humanista que promovió la integración de la ciencia y la cultura, convencido de que la comprensión de la naturaleza potencia la creatividad y el progreso social.

La labor de Ørsted ejemplifica la importancia de la observación rigurosa y la formulación de hipótesis en la construcción del conocimiento científico. Su experimento, sencillo en su concepción pero revolucionario en sus implicaciones, revela cómo una pregunta persistente puede abrir caminos inesperados y transformar para siempre el horizonte tecnológico y científico de la humanidad.

Ørsted se embarcó en la tarea de descubrir la esencia de la realidad, motivado por la fascinación por las conexiones invisibles aunque poderosas. Este esfuerzo nos recuerda que los grandes hallazgos frecuentemente surgen de una curiosidad innata y la habilidad de ver más allá de los límites del saber convencional.

Por Otilia Adame Luevano

Deja una respuesta

También te puede gustar